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Abstract 

A specialized ASIC/FPGA CAD tool is described that will 
take a user's high level code description of an algorithm and 
automatically generate abstract latency-optimal systolic 
arrays.  Several new systolic mapping examples of the 
Lyapunov matrix equation (find X, given AX+XB=C) 
obtained using this CAD tool are described. 

Introduction 
A systolic implementation of an algorithm results a parallel 
architecture that is fine-grained and regular, and that 
supports local pipelined movement of data (1). Algorithms 
in this class have been shown to solve a large range of 
structured problems (e.g., linear algebra, graph theory, 
computational geometry, number-theoretic algorithms, string 
matching,  sorting/searching, dynamic programming, 
discreet mathematics) (1)-(4).  However, systolic arrays are 
still very difficult to design because a considerable 
knowledge of algorithms, architectures, and hardware is 
required to be successful and no related CAD tools are 
available. 
In this paper a CAD tool, the symbolic parallel algorithm 
development environment (SPADE), is described which 
allows a user to specify his algorithm with traditional high-
level code, set some architectural constraints and then view 
the results in a meaningful graphical format. It is applied to 
finding a variety new optimal systolic algorithm mappings 
of the matrix Lyapunov equation, which was chosen as a 
design example in part because it's systolic solutions 
represent a superset of a large fraction of previously 
published systolic solutions. 

Related Work 
Much research has been directed at finding systematic 
methodologies for finding optimal parallel implementations 
of recursive or iterative algorithms (1)-(4).  Most of these 
deal with mathematical techniques, which, when applied to 
systems of "uniform" recurrence equations or their 
equivalent, result in parallel algorithms that represent 
"mappings" to an architectural model consisting of large 
arrays of locally connected virtual processing elements 
(PEs).  More specifically, these techniques calculate 
matrices that transform the index set describing the original 
algorithm to an index set containing at least one time 
dimension with the remaining indices used for spatial 
coordinates of the PEs in the virtual array (5).   
The disadvantage of tool methodologies based on uniform 
dependencies is that many important algorithms are not 
naturally expressed in this form and the process of putting 

them in this form can involve substantial effort. 
Furthermore, a particular choice of this form inherently 
restricts subsequent choice of architectures and thus the 
generated systolic arrays may not be optimal.   
A better algorithm representation would be that of systems 
of non-uniform affine recurrence equations. An example is 
the matrix Lyapunov problem (7):  find the solution to 
AX+XB=C, where A is an NxN non-singular lower 
triangular matrix, B is an NxN non-singular upper triangular 
matrix, C is an NxN matrix and X is an NxN unknown. The 
matrix equation can be represented in the equivalent form 
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This is a non-uniform recurrence equation and represents the 
form desired as an input to a CAD tool. 
In order to solve the general mapping problem of non-
uniform affine recurrence equations when desirable 
architectural constraints are imposed, it is necessary to use a 
search-based approach (6). The search methodology used by 
SPADE is based on (7), but involves a different formalism, 
is organized to provide better coverage of the architectural 
solution space for cases where solutions are less 
architecturally constrained, does additional analysis of 
potential solutions to give the designer more control over 
design tradeoffs, and includes a simulator that uses an 
embedded model of computation.    

SPADE Description    
A. Non-uniform Affine Recurrence Equations 
A system of non-uniform affine recurrence equations is 
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where f,g represent the functional variable dependencies,  jI   

is the index range for equation j, iw  is one of algorithm 
variables and the affine indexing functions are A(I)=AI+ a 
and B(I)=BI+b.  Here, A/a, and B/b are integer 
matrices/vectors.   All assignments of values to variables in 
the system of the equations must not involve a reuse of a 
variable. 



For each algorithm variable SPADE finds an affine 
transformation, T, that maps this algorithm variable's indices 
to space-time, e.g., for x from (1), ( ) ( )x x x xT x T A I a t= + + , 
where xT  is a matrix and xt  is a vector.  Thus, every 
variable x(i,j) gets mapped to a unique point in the space-
time domain.   For the example in (1) three indices specify I, 
so the mapping T for each variable is to one time dimension 
and two space dimensions, where the spatial index 
corresponds to a position in a virtual array of PEs.  
Therefore, the transformation T can be thought of as 
consisting of two parts, one that determines the scheduling 
index and one that determines the spatial index.  That is, 
writing ( )T x  using 

 ,x x
x x

x x

T t
S s

γΛ   
= =   
   

 (3) 

means that variable ( , )x i j  would be mapped to a time index 
( )x x x xA I a γΛ + +  ( /x xγΛ  is a vector/scalar), and to a 

spatial index ( )x x x xS A I a s+ + ( /x xS s  is a matrix/vector 
with a number of rows/elements equal to the dimension of 
the spatial array).  Each time index corresponds to potential 
activity (data transfer or calculation) in all PEs with that 
same index value. The algorithm latency is the total number 
of these time steps needed to compute the entire result. 
B. Solution Search 
From (3) it is clear that to specify the space-time mapping 
for x it is necessary to find the elements of , ,x x xS sΛ and the 
scalar xγ .  For example, given [ ]1 2x x xλ λΛ = , SPADE 
considers 1xλ and 2xλ  as "search" variables.  Following (7), 
the allocation matrices like xS are treated as a single 
variable, each derived from a unimodular matrix to ensure 
that the space-time mapping is "dense".  The small 
dimensionality of S limits the number of unique unimodular 
matrices that have to be considered. The fact that each 
algorithm variable has a different spatial mapping S is 
equivalent to it being reindexed with respect to other 
algorithm variables.   
Finally, given a set of search variables and their possible 
values, SPADE examines all possible combinations and 
chooses those having the minimum algorithm latency.  The 
difficulty in doing this is that there are potentially a large 
number of these search variables and even though each need 
take only a small range of values, the search is 
computationally infeasible.  This is solved (7) by introducing 
computational and architectural constraints that limit the 
space of solutions that has to be searched.  For example, 
causality requires that a computation can't occur if its 
arguments are not available.  From the example (1) it can be 
seen that computation of x depends upon input a.   Thus, it 
must follow temporally that   

 ( ) ( ) 0x x x x a a a aA I a B I bγ γΛ + + − Λ + − ≥ . (4) 

Given the large number of dependencies seen in (1) this 
generates a large number of such constraints.  
C. Input and output 
Input to SPADE is in the form of high-level code based on a 
subset of the Maple scientific programming language.  Very 
often it is possible to go directly from a scientific expression 
to equivalent code because the Maple language provides 
special syntax options for the commutative and associative 
operators (multiply, add, minimum, maximum) that SPADE 
supports.  For example, the Lyapunov algorithm can be 
written in this language directly from (1) as 
for i to N do
for j to N do (5)
x[i,j]:=(c[i,j]-add(a[i,k]*x[k,j],k=1..i-1)-

add(b[m,j]*x[i,m],m=1..j-1))/(a[i,i]+b[j,j])
end do;
end do; 

where the Maple "add" construct directly replaces the 
mathematical summation sign.  
Maple treats the loop structure in traditional way, but 
SPADE does not make any lexicographic interpretation of 
the loops; rather it uses the loop limits only to determine  the 
index space of the inner statement body. Computational 
ordering is determined directly from the loop body.   
Other inputs pertain to architectural constraints desired and 
objective function criteria used to select solutions from the 
search space.  Architectural constraints specify which 2-D 
variables should be constrained to align with the time axis 
(normal to the variable plane in space-time is perpendicular 
to the time axis) and selection criteria picks out minimum 
latency solutions with (1) minimum bounding-box area, (2) 
maximum regularity and (3) minimum array bandwidth as 
secondary objective functions. 
SPADE's primary outputs are the values T/t for each of the 
algorithm variables and a set of vectors that specify the 
direction of data flow for each dependency in the algorithm.  
For the example (1) it can be seen that x needs input from a, 
so corresponding to this dependence is a uniform flow of 
data from T(a) to T(x) in the space-time domain. Since this 
flow is one dimensional, a vector xav  is calculated to 
indicate its direction.  Consequently, in space-time T(a) 
represents a source of a data element moving in direction 

xav  to a corresponding point at T(x).  The transformations T 
are such that this data element arrives just in time to be used 
(along with other data) in a calculation that produces an 
element of the result x.  
Because the mathematical specification of T provides little 
insight into the nature of the solution, especially from the 
designer's point of view, graphical tools have been included 
as part of SPADE.  The two primary mapping views are (1) 
of space-time, which shows placement of the mapped 
algorithm variables, and (2) of the spatial mapping only, 
overlaid by the projected data-flows associated with all 
algorithm variable dependencies. 



Lyapunov Algorithm Mapping    
A. Minimum Area Designs 
In this first mapping example the code (5) is supplied 
directly to SPADE as input.  After parsing and analysis,  two 
unique mappings were found, each with a latency of 4N-3 
and area N(3N-1). (With x,a and b constrained to be "time 
aligned" two solutions with latency 6N-5 and area N(2N-1) 
were found in (7)). 
The automatically generated graphical space-time mapping 
of one of these solutions is shown in Fig. 1.  (In Fig.1 
IM1[i,j,k]=a[i,k]*x[k,j] and IM2[i,j,m]=b[m,j]*x[i,m], are 
two new variables created automatically in SPADE.) 

Fig. 1. Positions of variables from (1) in space-time viewed from two 
different perspectives  (N=6) .  

In Fig. 2 are the corresponding tool-generated projected 
view of the spatial array of PEs (one PE at each grid point) 
for each solution;  superimposed on this are the various data-
flows.  The shaded regions are labeled in correspondence 
with the placements of the original algorithm variables, x, a 
and b.  Since c has the same affine dependency as x, it is 
placed by SPADE (optionally) in the same locations as the 
variable x. Note that in the shaded lines (time-aligned 
variables, i.e., b and x) the normal of the "plane" of data is 
perpendicular to the time axis, so that there is a problem size 
amount of memory, O(N) per PE.  SPADE has switches that 
allow the user control of alignment and placement of such 
planes.  
As can be seen in Fig. 2, the PE arrays are non-uniform 
spatially and support nine different data-flows associated 
with the various algorithm variable dependencies.  Some 
PEs experience data flow in five different directions.  The 
picture in Fig. 2 shows all data flow paths.  The actual time 
variation of data flow is more complex, with the size of 
uniform sub-regions of PEs growing and shrinking with 
time. 
SPADE also provides options to explore sub-optimal latency 
solutions.  This is very important when useful designs have 
different but closely spaced latencies.  For example, if 
SPADE is set to explore minimum area designs for latencies 
of duration 4N-2, four  unique solutions are found with 
smaller areas N(N+1) as shown in Fig. 3.  

 

Fig. 2. Spatial projection (systolic array) and data flow for two area optimal 
space-time mappings having 4N-3 latency. Bottom design corresponds to 

space-time view in Fig. 1. (N=6) 

B. Maximum Regularity Designs 
ASIC/FPGA implementations are desired to be regular, 
preferably consisting of tiled blocks of memory, logic and 
connections.  Consequently, a more regular systolic structure 
with a larger abstract area might be ultimately easier to 
implement. Therefore SPADE provides another secondary 
objective function that measures array regularity.   The 
regularity metric scores a systolic array highest when 

Fig. 3. Spatial projections (systolic arrays) and data flow corresponding to 
four area optimal space-time mappings with 4N-2 latency (N=6). 

data flow occurs along orthogonal directions, when data 
flow paths are fewest in number, and when inputs and 
outputs occur as close together as spatially possible.  
SPADE penalizes designs under this criteria that result in a 



plane of data is that is constrained along a line, as b in Fig. 2, 
and when this line is not on the boundary of the array.   
Looking at all designs having a latency of 4N-2, four unique 
designs are found, each having an area (N+1)(N+1), which 
is  close to the minimum area designs found in Fig. 3. In this 
case algorithm variables a and b appear only at the array 
edge, although x is now distributed across the array.  
(Occasionally it may be desirable for an output to remain 
resident in an array after systolic processing, in particular if 
there's another phase of processing involved.)  All of these 
designs have the same systolic architecture and PE 
connectivity shown in Fig. 4.  However, each of the four 
designs have different data flowing among these connections 
(this can only be seen by viewing the corresponding space-
time views). 
Calculated values of T,t and v for some of the designs 
described above is provided in Table 1.    

Summary 
Although this tool can be used for ASIC design, FPGAs 
conceptually provide a better implementation strategy for 
systolic arrays.  Here, a designer faces a large number of 
design options, given the variety of reconfigurable 
computers and related hardware. For a given algorithm 
different systolic array mappings will present different 
tradeoffs from which he can make optimal choices.  Further 
design complexity is introduced when building 
programmable systolic arrays that support several different 
algorithms.  In this case a designer must consider 
architectural tradeoffs among systolic array mapping 
possibilities for each of the different algorithms he wants to 
support.  Having available only a few systolic "point" 
designs will lead to sub-optimal implementations.  
Consequently, the utility of this tool is that it can facilitate 
identification of such tradeoffs rapidly and easily because 
using SPADE moves the level of abstraction at which the 

designer must work away from the realm of detailed 
architectural and timing issues to the more familiar world of 
high-level code.  A simulator is available that has an 
embedded computational model to make the transition to 
systolic hardware more direct. 

Fig. 4. Spatial projections and data flow corresponding for maximum 
regularity systolic array with latency 4N-2 (N=6). 
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Table 1. Transformation matricesT,t and data flow vectors, v, for designs in Figs. 2, 3 and 4. 
 

 x a b IM1 IM2 νxa νxb νxIM1 νxIM2 νIM1a νIM1x νIM2b νIM2x 

Fig. 2 
(top) 

2 2
2 0

0 0

1
, 0

0
−

−  
  

   
 1 1

1 1
1 1

0
, 0

0
− −
−

  
  

   
 1 1

1 1
1 1

0
, 1

0
−

−

  
−  

   

1 2 1
1 0 1
1 0 1

1
, 0

0
− −
−

−  
  

   
 2 1 1

2 1 1
0 1 1

1
, 0

0
− −

−

−  
  

   
0
0
 
 

 2
0

− 
 

1
1
− 
 

1
1
− 
 

0
0
 
 

 1
1

−
−
 
 

2
0

− 
 

1
1−

 
 

Fig. 3 
(top 
 left) 

2 2
0 0
0 1

0
, 0

0−

  
  

   
 1 1

1 1
0 0

0
, 0

0
−

  
  

   
 1 1

1 1
0 1

1
, 0

0
−
−

  
  

   
 1 2 1

1 0 1
0 1 0

0
, 0

0
−

−

  
  

   
 2 1 1

0 1 1
0 1 0

0
, 0

0
−
−

  
  

   
 0

1−
 
 

0
0
 
 

 1
0
 
 

 1
0
 
 

0
1−

 
 

1
0
− 
 

0
0
 
 

 1
1

−
−
 
 

Fig. 4 
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