
ASIC/FPGA CAD Tool for Automated Systolic Algorithm Mapping
J. Greg Nash

Centar (www.centar.net)
Los Angeles, California, USA

Abstract

A specialized ASIC/FPGA CAD tool is described that will
take a user's high level code description of an algorithm and
automatically generate abstract latency-optimal systolic
arrays. Several new systolic mapping examples of the
Lyapunov matrix equation (find X, given AX+XB=C)
obtained using this CAD tool are described.

Introduction
A systolic implementation of an algorithm results a parallel
architecture that is fine-grained and regular, and that
supports local pipelined movement of data (1). Algorithms
in this class have been shown to solve a large range of
structured problems (e.g., linear algebra, graph theory,
computational geometry, number-theoretic algorithms, string
matching, sorting/searching, dynamic programming,
discreet mathematics) (1)-(4). However, systolic arrays are
still very difficult to design because a considerable
knowledge of algorithms, architectures, and hardware is
required to be successful and no related CAD tools are
available.
In this paper a CAD tool, the symbolic parallel algorithm
development environment (SPADE), is described which
allows a user to specify his algorithm with traditional high-
level code, set some architectural constraints and then view
the results in a meaningful graphical format. It is applied to
finding a variety new optimal systolic algorithm mappings
of the matrix Lyapunov equation, which was chosen as a
design example in part because it's systolic solutions
represent a superset of a large fraction of previously
published systolic solutions.

Related Work
Much research has been directed at finding systematic
methodologies for finding optimal parallel implementations
of recursive or iterative algorithms (1)-(4). Most of these
deal with mathematical techniques, which, when applied to
systems of "uniform" recurrence equations or their
equivalent, result in parallel algorithms that represent
"mappings" to an architectural model consisting of large
arrays of locally connected virtual processing elements
(PEs). More specifically, these techniques calculate
matrices that transform the index set describing the original
algorithm to an index set containing at least one time
dimension with the remaining indices used for spatial
coordinates of the PEs in the virtual array (5).
The disadvantage of tool methodologies based on uniform
dependencies is that many important algorithms are not
naturally expressed in this form and the process of putting

them in this form can involve substantial effort.
Furthermore, a particular choice of this form inherently
restricts subsequent choice of architectures and thus the
generated systolic arrays may not be optimal.
A better algorithm representation would be that of systems
of non-uniform affine recurrence equations. An example is
the matrix Lyapunov problem (7): find the solution to
AX+XB=C, where A is an NxN non-singular lower
triangular matrix, B is an NxN non-singular upper triangular
matrix, C is an NxN matrix and X is an NxN unknown. The
matrix equation can be represented in the equivalent form

1 1

[,] [,]* [,] [,]* [,]
ji

k m
c i j a i k x k j b m j x i m

= =

= +∑ ∑ ,

which leads directly by induction to the solution

11

1 1

1 ,

(,) (,)* (,) (,)* (,)
(,) .

(,) (,)

ji

k m

for i j N

c i j a i k x k j b m j x i m
x i j

a i i b j j

−−

= =

≤ ≤

− −
=

+

∑ ∑ (1)

This is a non-uniform recurrence equation and represents the
form desired as an input to a CAD tool.
In order to solve the general mapping problem of non-
uniform affine recurrence equations when desirable
architectural constraints are imposed, it is necessary to use a
search-based approach (6). The search methodology used by
SPADE is based on (7), but involves a different formalism,
is organized to provide better coverage of the architectural
solution space for cases where solutions are less
architecturally constrained, does additional analysis of
potential solutions to give the designer more control over
design tradeoffs, and includes a simulator that uses an
embedded model of computation.

SPADE Description
A. Non-uniform Affine Recurrence Equations
A system of non-uniform affine recurrence equations is

1 1 1 1

n

(()) (... (()),...) I
... (2)

(()) (... (()),...) I

i i

n n i in

w A I g w B I for all I in

w A I f w B I for all I in

=

=

where f,g represent the functional variable dependencies, jI

is the index range for equation j, iw is one of algorithm
variables and the affine indexing functions are A(I)=AI+ a
and B(I)=BI+b. Here, A/a, and B/b are integer
matrices/vectors. All assignments of values to variables in
the system of the equations must not involve a reuse of a
variable.

For each algorithm variable SPADE finds an affine
transformation, T, that maps this algorithm variable's indices
to space-time, e.g., for x from (1), () ()x x x xT x T A I a t= + + ,
where xT is a matrix and xt is a vector. Thus, every
variable x(i,j) gets mapped to a unique point in the space-
time domain. For the example in (1) three indices specify I,
so the mapping T for each variable is to one time dimension
and two space dimensions, where the spatial index
corresponds to a position in a virtual array of PEs.
Therefore, the transformation T can be thought of as
consisting of two parts, one that determines the scheduling
index and one that determines the spatial index. That is,
writing ()T x using

 ,x x
x x

x x

T t
S s

γΛ   
= =   
   

 (3)

means that variable (,)x i j would be mapped to a time index
()x x x xA I a γΛ + + (/x xγΛ is a vector/scalar), and to a

spatial index ()x x x xS A I a s+ + (/x xS s is a matrix/vector
with a number of rows/elements equal to the dimension of
the spatial array). Each time index corresponds to potential
activity (data transfer or calculation) in all PEs with that
same index value. The algorithm latency is the total number
of these time steps needed to compute the entire result.
B. Solution Search
From (3) it is clear that to specify the space-time mapping
for x it is necessary to find the elements of , ,x x xS sΛ and the
scalar xγ . For example, given []1 2x x xλ λΛ = , SPADE
considers 1xλ and 2xλ as "search" variables. Following (7),
the allocation matrices like xS are treated as a single
variable, each derived from a unimodular matrix to ensure
that the space-time mapping is "dense". The small
dimensionality of S limits the number of unique unimodular
matrices that have to be considered. The fact that each
algorithm variable has a different spatial mapping S is
equivalent to it being reindexed with respect to other
algorithm variables.
Finally, given a set of search variables and their possible
values, SPADE examines all possible combinations and
chooses those having the minimum algorithm latency. The
difficulty in doing this is that there are potentially a large
number of these search variables and even though each need
take only a small range of values, the search is
computationally infeasible. This is solved (7) by introducing
computational and architectural constraints that limit the
space of solutions that has to be searched. For example,
causality requires that a computation can't occur if its
arguments are not available. From the example (1) it can be
seen that computation of x depends upon input a. Thus, it
must follow temporally that

 () () 0x x x x a a a aA I a B I bγ γΛ + + − Λ + − ≥ . (4)

Given the large number of dependencies seen in (1) this
generates a large number of such constraints.
C. Input and output
Input to SPADE is in the form of high-level code based on a
subset of the Maple scientific programming language. Very
often it is possible to go directly from a scientific expression
to equivalent code because the Maple language provides
special syntax options for the commutative and associative
operators (multiply, add, minimum, maximum) that SPADE
supports. For example, the Lyapunov algorithm can be
written in this language directly from (1) as
for i to N do
for j to N do (5)
x[i,j]:=(c[i,j]-add(a[i,k]*x[k,j],k=1..i-1)-

add(b[m,j]*x[i,m],m=1..j-1))/(a[i,i]+b[j,j])
end do;
end do;

where the Maple "add" construct directly replaces the
mathematical summation sign.
Maple treats the loop structure in traditional way, but
SPADE does not make any lexicographic interpretation of
the loops; rather it uses the loop limits only to determine the
index space of the inner statement body. Computational
ordering is determined directly from the loop body.
Other inputs pertain to architectural constraints desired and
objective function criteria used to select solutions from the
search space. Architectural constraints specify which 2-D
variables should be constrained to align with the time axis
(normal to the variable plane in space-time is perpendicular
to the time axis) and selection criteria picks out minimum
latency solutions with (1) minimum bounding-box area, (2)
maximum regularity and (3) minimum array bandwidth as
secondary objective functions.
SPADE's primary outputs are the values T/t for each of the
algorithm variables and a set of vectors that specify the
direction of data flow for each dependency in the algorithm.
For the example (1) it can be seen that x needs input from a,
so corresponding to this dependence is a uniform flow of
data from T(a) to T(x) in the space-time domain. Since this
flow is one dimensional, a vector xav is calculated to
indicate its direction. Consequently, in space-time T(a)
represents a source of a data element moving in direction

xav to a corresponding point at T(x). The transformations T
are such that this data element arrives just in time to be used
(along with other data) in a calculation that produces an
element of the result x.
Because the mathematical specification of T provides little
insight into the nature of the solution, especially from the
designer's point of view, graphical tools have been included
as part of SPADE. The two primary mapping views are (1)
of space-time, which shows placement of the mapped
algorithm variables, and (2) of the spatial mapping only,
overlaid by the projected data-flows associated with all
algorithm variable dependencies.

Lyapunov Algorithm Mapping
A. Minimum Area Designs
In this first mapping example the code (5) is supplied
directly to SPADE as input. After parsing and analysis, two
unique mappings were found, each with a latency of 4N-3
and area N(3N-1). (With x,a and b constrained to be "time
aligned" two solutions with latency 6N-5 and area N(2N-1)
were found in (7)).
The automatically generated graphical space-time mapping
of one of these solutions is shown in Fig. 1. (In Fig.1
IM1[i,j,k]=a[i,k]*x[k,j] and IM2[i,j,m]=b[m,j]*x[i,m], are
two new variables created automatically in SPADE.)

Fig. 1. Positions of variables from (1) in space-time viewed from two
different perspectives (N=6) .

In Fig. 2 are the corresponding tool-generated projected
view of the spatial array of PEs (one PE at each grid point)
for each solution; superimposed on this are the various data-
flows. The shaded regions are labeled in correspondence
with the placements of the original algorithm variables, x, a
and b. Since c has the same affine dependency as x, it is
placed by SPADE (optionally) in the same locations as the
variable x. Note that in the shaded lines (time-aligned
variables, i.e., b and x) the normal of the "plane" of data is
perpendicular to the time axis, so that there is a problem size
amount of memory, O(N) per PE. SPADE has switches that
allow the user control of alignment and placement of such
planes.
As can be seen in Fig. 2, the PE arrays are non-uniform
spatially and support nine different data-flows associated
with the various algorithm variable dependencies. Some
PEs experience data flow in five different directions. The
picture in Fig. 2 shows all data flow paths. The actual time
variation of data flow is more complex, with the size of
uniform sub-regions of PEs growing and shrinking with
time.
SPADE also provides options to explore sub-optimal latency
solutions. This is very important when useful designs have
different but closely spaced latencies. For example, if
SPADE is set to explore minimum area designs for latencies
of duration 4N-2, four unique solutions are found with
smaller areas N(N+1) as shown in Fig. 3.

Fig. 2. Spatial projection (systolic array) and data flow for two area optimal
space-time mappings having 4N-3 latency. Bottom design corresponds to

space-time view in Fig. 1. (N=6)

B. Maximum Regularity Designs
ASIC/FPGA implementations are desired to be regular,
preferably consisting of tiled blocks of memory, logic and
connections. Consequently, a more regular systolic structure
with a larger abstract area might be ultimately easier to
implement. Therefore SPADE provides another secondary
objective function that measures array regularity. The
regularity metric scores a systolic array highest when

Fig. 3. Spatial projections (systolic arrays) and data flow corresponding to
four area optimal space-time mappings with 4N-2 latency (N=6).

data flow occurs along orthogonal directions, when data
flow paths are fewest in number, and when inputs and
outputs occur as close together as spatially possible.
SPADE penalizes designs under this criteria that result in a

plane of data is that is constrained along a line, as b in Fig. 2,
and when this line is not on the boundary of the array.
Looking at all designs having a latency of 4N-2, four unique
designs are found, each having an area (N+1)(N+1), which
is close to the minimum area designs found in Fig. 3. In this
case algorithm variables a and b appear only at the array
edge, although x is now distributed across the array.
(Occasionally it may be desirable for an output to remain
resident in an array after systolic processing, in particular if
there's another phase of processing involved.) All of these
designs have the same systolic architecture and PE
connectivity shown in Fig. 4. However, each of the four
designs have different data flowing among these connections
(this can only be seen by viewing the corresponding space-
time views).
Calculated values of T,t and v for some of the designs
described above is provided in Table 1.

Summary
Although this tool can be used for ASIC design, FPGAs
conceptually provide a better implementation strategy for
systolic arrays. Here, a designer faces a large number of
design options, given the variety of reconfigurable
computers and related hardware. For a given algorithm
different systolic array mappings will present different
tradeoffs from which he can make optimal choices. Further
design complexity is introduced when building
programmable systolic arrays that support several different
algorithms. In this case a designer must consider
architectural tradeoffs among systolic array mapping
possibilities for each of the different algorithms he wants to
support. Having available only a few systolic "point"
designs will lead to sub-optimal implementations.
Consequently, the utility of this tool is that it can facilitate
identification of such tradeoffs rapidly and easily because
using SPADE moves the level of abstraction at which the

designer must work away from the realm of detailed
architectural and timing issues to the more familiar world of
high-level code. A simulator is available that has an
embedded computational model to make the transition to
systolic hardware more direct.

Fig. 4. Spatial projections and data flow corresponding for maximum
regularity systolic array with latency 4N-2 (N=6).

Acknowledgements
This work was supported in part by DARPA Contracts
DAAH01-96-C-R135 and DAAH01-97-C-R107.

References
(1) Kung, S.Y., "VLSI Array Processing", Prentice Hall, 1988.
(2) D. I. Moldevan, "Parallel Processing", Morgen Kaufmann, 1993.
(3) Keshab K. Parhi, "VLSI Digital Signal Processing Systems", John

Wiley, 1999, Chapter 7.
(4) P. Quinton, and Y. Robert, "Systolic Algorithms and Architectures",

Prentice Hall 1991.
(5) Schreiber, R., et. al., "High-Level Synthesis of Nonprogrammable

Hardware Accelerators", Proc. IEEE Int. Conf. Application Specific
Systems, Architectures, and Processors, IEEE Computer Society,
July, 2000, p. 113-124b.

(6) Paul Feautrier, "Fine Grain Scheduling under Resource Constraints,"
7th Workshop on Language and Compilers for Parallel Computers,
Aug. 1994.

(7) Donald Baltus and Jonathon, "Efficient Exploration of Nonuniform
Space-Time Transformations for Optimal systolic Array Synthesis,"
Proc. Application specific Array Processors, 1993, pp.428-441.

Table 1. Transformation matricesT,t and data flow vectors, v, for designs in Figs. 2, 3 and 4.

 x a b IM1 IM2 νxa νxb νxIM1 νxIM2 νIM1a νIM1x νIM2b νIM2x

Fig. 2
(top)

2 2
2 0

0 0

1
, 0

0
−

−  
  

   
 1 1

1 1
1 1

0
, 0

0
− −
−

  
  

   
 1 1

1 1
1 1

0
, 1

0
−

−

  
−  

   

1 2 1
1 0 1
1 0 1

1
, 0

0
− −
−

−  
  

   
 2 1 1

2 1 1
0 1 1

1
, 0

0
− −

−

−  
  

   
0
0
 
 

 2
0

− 
 

1
1
− 
 

1
1
− 
 

0
0
 
 

 1
1

−
−
 
 

2
0

− 
 

1
1−

 
 

Fig. 3
(top
 left)

2 2
0 0
0 1

0
, 0

0−

  
  

   
 1 1

1 1
0 0

0
, 0

0
−

  
  

   
 1 1

1 1
0 1

1
, 0

0
−
−

  
  

   
 1 2 1

1 0 1
0 1 0

0
, 0

0
−

−

  
  

   
 2 1 1

0 1 1
0 1 0

0
, 0

0
−
−

  
  

   
 0

1−
 
 

0
0
 
 

 1
0
 
 

 1
0
 
 

0
1−

 
 

1
0
− 
 

0
0
 
 

 1
1

−
−
 
 

Fig. 4
2 2
0 1
1 0

0
, 0

0
−

−

  
  

   
 1 1

0 0
0 1

0
, 0

0−

  
  

   
 1 1

0 1
0 0

0
, 0

0
−

  
  

   
 1 2 1

0 1 0
0 0 1

0
, 0

0
−

−

  
  

   
 2 1 1

0 1 0
1 0 0

0
, 0

0
−

−

  
  

   
 1

0
− 
 

0
1−

 
 

0
1−

 
 

0
0
 
 

1
0
− 
 

0
0
 
 

 0
1−

 
 

1
0
− 
 

	A. Non-uniform Affine Recurrence Equations
	B. Solution Search
	C. Input and output
	A. Minimum Area Designs
	B. Maximum Regularity Designs

